What is claimed is:

1. A compound of having the chemical structure of formula (A):

(A)
with peripheral analgesic effect, wherein:
a) X is selected from the group consisting of H and C_{1-6} alkyl;
b) $\quad \mathrm{Y}$ and Z are independently selected from the group consisting of H , cyclic aralkyl, and C_{1-0} alkyl;
c) $\quad R_{1}$ is a tyrosyl residue or a $2^{\prime}, 6^{\prime}$-dimethyltyrosyl residue;
d) $\quad R_{2}$ is an amino acid having the R-configuration, aminoisobutyric acid, cyclopropylalanine, cyclohomoleucine or cycloleucine;
e) $\quad R_{3}$ is an aromatic amino acid;
f) $\quad R_{4}$ is an aromatic amino acid residue;
g) $\quad \mathrm{Q}$ is an amide bond or an interposed amide bond mimetic;
h) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H ; and
iv) $\quad R_{3}$ is phenylalanine;
then R_{4} is not unsubstituted phenylalanine or phenylalanine substituted with $4 \mathrm{NO}_{2}$ or $4 \mathrm{~N}_{3}$;
i) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H ; and
$4 . \mathrm{NO}_{2}:$
j) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H; and
iv) $\quad R_{4}$ is l^{\prime}-naphthylalanine; then R_{3} is not 1^{\prime}-naphthylalanine or 2^{\prime}-naphthylalanine;
k) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine; and
iii) X, Y and Z are H ,
then both R_{3} and R_{4} are not tryptophan;
1) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad \mathrm{R}_{2}$ is a D-amino acid with a lower alkyl or lower thioalkyl group as a side chain; and
iii) $\quad R_{4}$ is a neutral amino acid,
then R_{3} is not unsubstituted phenylalanine;
$\mathrm{m})$ and wherein said compound is not selected from the group consisting of: H-Tyr-D-Phe-Phe-Phe- NH_{2};
H-Tyr-D-NMePhe-Phe-Phe- NH_{2};
H-Tyr-D-Tic-Phe-Phe- NH_{2};
H-Tyr-Pro-Phe-Thr(Bzl)-NH2;
H-Tyr-Pro-Phe-Phe-NH2;
H-Tyr-Pro-Phe-Apb-NH2;
H-Tyr-Pro-Phe-App-NH ${ }_{2}$;
H-Tyr-Pro-Phe-Aph- NH_{2}; and
H-Tyr-Pro-Apb-Phe- NH_{2}.
wherein Apb is 2-amino-4-phenylbutanoic acid. App is 2-amino-5-phenylpentanoic
3. The compound of either claim 1 or 2 , wherein:
a) $\quad R_{2}$ is as defined in claim 1 ;
b) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad \mathrm{R}_{2}$ is D -alanine; and
iii) $\quad \mathrm{Y}$ and Z are H ;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine, and tryptophan.
4. The compound of either claim 1 or claim 2, wherein Q is an amide bond or an interposed amide bond mimetic of̂ the formuia $\hat{Q}_{1}-\hat{Q}_{2}$, wherein:
a) $\quad \mathrm{Q}_{1}$ is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{CHOH}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and $\mathrm{CH}=$; and
b) $\quad \mathrm{Q}_{2}$ is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{O}$, and $\mathrm{CH}=$;
c) with the proviso that when Q_{1} is $\mathrm{CH}=$, then Q_{2} is $\mathrm{CH}=$.
5. The compound of claim 3, wherein Q is an amide bond or an interposed amide bond mimetic of the formula $\mathrm{Q}_{1}-\mathrm{Q}_{2}$, wherein:
a) Q_{1} is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{CHOH}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and $\mathrm{CH}=$; and
b) $\quad \mathrm{Q}_{2}$ is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{O}$, and CH=;
c) with the proviso that when Q_{1} is $\mathrm{CH}=$, then Q_{2} is $\mathrm{CH}=$.
6. The compound of claim 5, wherein:
a) $\quad \mathrm{Y}$ and Z are H ;
b) $\quad R_{2}$ is as defined in claim 1 ;
e) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue; and
ii) $\quad R_{2}$ is D-alanine;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
7. The compound of either claim 1 or claim 2, wherein:
a) $\quad \mathrm{Y}$ and Z are H ;
b) $\quad \mathrm{R}_{2}$ is as defined in claim 1;
c) $\quad \mathrm{R}_{3}$ is an aromatic amino acid; and
d) $\quad \mathrm{R}_{4}$ is an aromatic amino acid;
e) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue; and
ii) $\quad R_{2}$ is D-alanine;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
8. The compound of claim 4, wherein:
a) Y and Z are H ;
b) $\quad \mathrm{R}_{2}$ is as defined in claim 1;
c) $\quad R_{3}$ is an aromatic amino acid; and
d) $\quad R_{4}$ is an aromatic amino acid;
e) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue; and
ii) $\quad R_{2}$ is D-alanine;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
9. The compound of claim 6, wherein:
c) $\quad \mathrm{R}_{4}$ is a phenylalanyl residue.
10. The compound of claim 7, wherein:
a) $\quad R_{2}$ is as defined in claim 1, with the proviso that R_{2} is not D-alanine;
b) $\quad R_{3}$ is a phenylalanyl residue; and
c) $\quad R_{4}$ is a phenylalanyl residue.
11. The compound of claim 8, wherein:
a) $\quad R_{2}$ is as defined in claim 1 , with the proviso that R_{2} is not D-alanine;
b) $\quad R_{3}$ is a phenylalanyl residue; and
c) $\quad R_{4}$ is a phenylalanyl residue.
12. I he compound of claim 6, wherein:
a) $\quad R_{1}$ is a tyrosyl residue;
b) $\quad R_{2}$ is selected from the group consisting of D-serine and D-arginine;
c) $\quad R_{3}$ is a phenylalanyl residue;
d) $\quad R_{4}$ is a phenylalanyl residue; and
e) $\quad \mathrm{Q}$ is an amide bond.
13. The compound of claim 7, wherein:
a) $\quad R_{1}$ is a tyrosyl residue;
b) $\quad \mathrm{R}_{2}$ is selected from the group consisting of D -serine and D -arginine;
c) $\quad R_{3}$ is a phenylalanyl residue;
d) $\quad R_{4}$ is a phenylalanyl residue; and
e) $\quad Q$ is an amide bond.
14. The compound of claim 8, wherein:
a) $\quad R_{1}$ is a tyrosyl residue;
b) $\quad R_{2}$ is selected from the group consisting of D-serine and D-arginine;
c) $\quad R_{2}$ is a phenylalanyl residue:
15. A compound selected from the group consisting of:
$\mathrm{H}-\mathrm{Tyr}$-Aib-Phe-Phe- NH_{2};
H-Tyr-D-Nle-Phe-Phe-NH:
H-Tyr-D-Ala-Phe-2'-Nal-NH2;
$5 \quad$ H-Tyr-D-Ala-D-Phe-Phe- NH_{2};
H-Tyr-D-Ala-Phe(4NO2)-Phe(4NO2)- NH_{2};
H-Tyr-D-Ala-Phe-Tic- NH_{2};
H-Tyr-D-Ala-Phe-Phe(NMe)- NH_{2} :
H-Tyr-D-Ala-Phe-1'-Nal-NH2;
10
H-Tyr-D-Ala-Trp-Phe-NH2;

H-Tyr- ∇ Ala-Phe-Phe- NH_{2};
$\nabla \mathrm{CH}_{2}$-Tyr-D-Ala-Phe-Phe- NH_{2};
H-Tyr-D-Nle-Phe-Trp- NH_{2};
15
H-Tyr-D-Nle-Phe-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-Phe- NH_{2};
H-Tyr-D-Ala-Trp-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-Trp-NH2;
20
H-Tyr-D-Nva-Phe-Phe- NH_{2};
H-Tyr-D-Ser-Phe-Phe- NH_{2} :
H-Tyr-D-Val-Phe-Phe-NH2;
11-Tyr-D-1eu-Phe-Phc-NH2:
11-Tyr-D-lle-Phe-Phe-NH:
25
H-Tyr-D-Abu-Phe-Phe-NH2'
H-Tyr-Chl-Phe-Phe- NH_{2} :
H-Tyr-Cle-Phe-Phe-NH2:
H-Tyr-D-Arg-Phe-Phe-NH2:

11-1)MI-1)-sur-Phe-phe- \il.

H-Tyr-D-Ala-Phe-Phe-OH trifluoroacetate;
H-Tyr-D-Ala-Phe-Phg- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-Hph- NH_{2} bis-trifluoroacetic acid;
H-DMT-D-Ala-Phe-Phe- NH_{2} trifluoroacetic acid;

H-D-DMT-D-Ala-Phe-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Hph-NH2 trifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Cys(Bzl)- NH_{2} trifluoroacetic acid salt;
H -Tyr-D-Arg-Hph-Phe- NH_{2} bis-trifluoroacetic acid salt;
H-Tyr-D-Arg-Phg-Phe-NH2 bis-trifluoro acetic acid salt;
H-Tyr-D-Ala-Phe-Phe- $\mathrm{CH}_{2} \mathrm{OH}$ hydrochloride salt;
$\mathrm{H}-\mathrm{Tyr}-\mathrm{D}-\mathrm{Ala}-\mathrm{H} p h-\mathrm{Fh}=-\mathrm{NiH}_{2}$ trifiuoroacetic acid sait;
H-Tyr-D-Met-Phe-Phe-NH2 trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-D-Phe- NH_{2} bis-trifluoroacetic acid salt;
H-Tyr-D-Ala-Phg-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-(D)-Ala-(D)-Phg-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-Phe(pF)- NH_{2} bis-trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-D-Phe(pF)- NH_{2} ditrifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Phe $(\mathrm{pF})-\mathrm{NH}_{2}$ trifluoroacetic acid salt; and
H-Tyr-D-Ala-Phe-D-Phe(pF)- NH_{2} trifluoroacetic acid salt.
16. The compound of claim 1, wherein said compound is H -Tyr-D-Ser-Phe-Phe- NH_{2}.
17. The compound of claim 1, wherein said compound is H -Tyr-D-Arg-Phe-Phe-NH2.
18. A pharmaceutical composition possessing analgesic activity, comprising, in admixture with a pharmaceutically acceptable carrier, an effective amount of at least one compound having the chemical structure of formula (A):
with peripheral analgesic effect, wherein:
a) $\quad \mathrm{X}$ is selected from the group consisting of H and C_{1-6} alkyl;
b) $\quad \mathrm{Y}$ and Z are independently selected from the group consisting of H . cyclic aralkyl, and C_{1-6} alkyl;
c) $\quad \mathrm{R}_{1}$ is a tyrosyl residue or a $2^{\prime}, 6^{\prime}$-dimethyltyrosyl residue;
d) $\quad R_{2}$ is an amino acid having the R -configuration, aminoisobutyric acid, cyclopropylalanine, cyclohomoleucine or cycloleucine;
e) $\quad \mathrm{R}_{3}$ is an aromatic amino acid;
f) $\quad \mathrm{R}_{4}$ is an aromatic amino acid residue;
g) $\quad \mathrm{Q}$ is an amide bond or an interposed amide bond mimetic;
h) wiin the proviso that when.
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H ; and
iv) $\quad R_{3}$ is phenylalanine;
then R_{4} is not unsubstituted phenylalanine or phenylalanine substituted with $4 \mathrm{NO}_{2}$ or $4 \mathrm{~N}_{3}$;
i) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H ; and
iv) $\quad R_{4}$ is phenylalanine;
then R_{3} is not unsubstituted phenylalanine or phenylalanine substituted with $4 \mathrm{NO}_{2}$;
j) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H; and
k) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine; and
iii) X, Y and Z are H , then both R_{3} and R_{4} are not tryptophan;

1) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is a D-amino acid with a lower alkyl or lower thioalkyl group as a side chain; and
iii) $\quad R_{4}$ is a neutral amino acid, then R_{3} is not unsubstituted phenylàanine;
m) and wherein said compound is not selected from the group consisting of:

H-Tyr-D-Phe-Phe-Phe- NH_{2},
H-Tyr-D-NMePhe-Phe-Phe- NH_{2};
H-Tyr-D-Tic-Phe-Phe- NH_{2};
H-Tyr-Pro-Phe-Thr(Bz1)- NH_{2};
H-Tyr-Pro-Phe-Phe- NH_{2};
H-Tyr-Pro-Phe-Apb-NH2;
H-Tyr-Pro-Phe-App-NH2;
H-Tyr-Pro-Phe-Aph- NH_{2}; and
H-Tyr-Pro-Apb-Phe- NH_{2}.
wherein Apb is 2-amino-4-phenylbutanoic acid, App is 2-amino-5-phenylpentanoic acid and Aph is 2-amino-6-phenylhexanoic acid.
19. The pharmaceutical composition of claim 18 wherein said composition has peripheral analgesic activity and wherein said compound has a chemical structure in which X is H .
20. The pharmaceutical composition of either claim 18 or claim 19 wherein said composition

$$
\text { a) } \quad \mathrm{R}_{2} \text { is as defined in claim } 18 \text { : }
$$

b) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine; and
iii) $\quad \mathrm{Y}$ and Z are H ;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine, and tryptophan.
21. The pharmaceutical composition of either claim 18 or claim 19 wherein said composition has peripheral analgesic activity and wherein said compound has a chemical structure in which: Q is an amide bond or an interposed amide bond mimetic of the formula $\mathrm{Q}_{1}-\mathrm{Q}_{2}$, wherein:
a) Q_{1} is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{CHOH}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and $\mathrm{CH}=$; and
b) $\quad \mathrm{Q}_{2}$ is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{O}$, and $\mathrm{CH}=$;
c) with the proviso that when Q_{1} is $\mathrm{CH}=$, then Q_{2} is $\mathrm{CH}=$.
22. The pharmaceutical composition of 20 wherein said composition has peripheral analgesic activity and wherein said compound has a chemical structure in which: Q is an amide bond or an interposed amide bond mimetic of the formula $Q_{1}-Q_{2}$, wherein:
a) Q_{1} is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{CHOH}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and $\mathrm{CH}=$; and
b) $\quad \mathrm{Q}_{2}$ is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{O}$, and $\mathrm{CH}=$;
c) with the proviso that when Q_{1} is $\mathrm{CH}=$, then Q_{2} is $\mathrm{CH}=$.
23. The pharmaceutical composition of claim 22, wherein said composition has peripheral analgesic activity and wherein said compound has a chemical structure in which:
\qquad
c) $\quad \mathrm{R}$: is an aromatic amino acid: and
d) $\quad R_{\perp}$ is an aromatic amino acid;
e) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue; and
ii) $\quad R_{2}$ is D-alanine; then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
24. The pharmaceutical composition of either claim 18 or 19 , wherein said composition has peripheral analgesic activity and wherein said compound has a chemical structure in which:
a) $\quad \mathrm{Y}$ and Z are H ;
b) $\quad \mathrm{K}_{2}$ is as defined in ciaim i8;
c) $\quad \mathrm{R}_{3}$ is an aromatic amino acid; and
d) $\quad \mathrm{R}_{4}$ is an aromatic amino acid;
e) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue; and
ii) $\quad R_{2}$ is D-alanine;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
25. The pharmaceutical composition of claim 18, further comprising an effective amount of at least one other therapeutically active agent.
26. The pharmaceutical composition of claim 20. further comprising an effective amount of at least one other therapeutically active agent.
27. The pharmaceutical composition of claim 21, further comprising an effective amount of at least one other therapeutically active agent.
29. The pharmaceutical composition of claim 24, further comprising an effective amount of at least one other therapeutically active agent.
30. A method for the treatment of pain comprising the step of administering to a mammal in need of such treatment a pharmaceutically effective amount of at least one compound having the chemical structure of formula (A):

(A)
wherein:
a) $\quad \mathrm{X}$ is selected from the group consisting of H and C_{1-6} alkyl;
b) $\quad \mathrm{Y}$ and Z are independently selected from the group consisting of H , cyclic aralkyl, and C_{1-6} alkyl;
c) $\quad R_{1}$ is a tyrosyl residue or a $2^{\prime}, 6^{\prime}$-dimethyltyrosyl residue;
d) $\quad R_{2}$ is an amino acid having the R-configuration, aminoisobutyric acid, cyclopropylalanine, cyclohomoleucine or cycloleucine;
e) $\quad \mathrm{R}_{3}$ is an aromatic amino acid;
f) $\quad R_{4}$ is an aromatic amino acid residue;
g) $\quad \mathrm{Q}$ is an amide bond or an interposed amide bond mimetic;
h) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H ; and
iv) $\quad R_{3}$ is phenylalanine;
then R_{4} is not unsubstituted phenylalanine or phenylalanine substituted with $4 \mathrm{NO}_{2}$ or $4 \mathrm{~N}_{3}$;
11) $\quad R_{2}$ is D-alanine:
iii) X, Y, and Z are H ; and
iv) $\quad R_{4}$ is phenylalanine;
then R_{3} is not unsubstituted phenylalanine or phenylalanine substituted with $4 \mathrm{NO}_{2}$;
j) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H ; and
iv) $\quad R_{4}$ is 1^{\prime}-naphthylalanine;
then R_{3} is not 1^{\prime}-naphthylalanine or 2^{\prime}-naphthylalanine;
k) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine; and
iii) X, Y and Z are H , then both R_{3} and R_{4} are not tryptophan;

1) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is a D-amino acid with a lower alkyl or lower thioalkyl group as a side chain; and
iii) $\quad R_{4}$ is a neutral amino acid,
then R_{3} is not unsubstituted phenylalanine;
m) and wherein said compound is not selected from the group consisting of:
H-Tyr-D-Phe-Phe-Phe- NH_{2};
H-Tyr-D-NMePhe-Phe-Phe-NH2;
H-Tyr-D-Tic-Phe-Phe-NH2;
H-Tyr-Pro-Phe-Thr(Bz1)-NH2;
H-Tyr-Pro-Phe-Phe- NH_{2};
H-Tyr-Pro-Phe-Apb-NH2:

H-Tyr-Pro-Apb-Phe-NHz
wherein Apb is 2-amino-4-phenylbutanoic acid, App is 2-amino-5-phenylpentanoic acid and Aph is 2-amino-6-phenylhexanoic acid
31. The method of claim 30 , wherein said compound has a chemical structure in which X is H
32. The method of either claim 30 or claim 31, wherein said compound has a chemical structure in which:
a) $\quad R_{2}$ is as defined in claim 30 ;
b) with the proviso that when:
i) $\quad \mathrm{R}_{1}$ is a tyrosyl residue;
ii) $\quad \mathrm{K}_{2}$ is $\overline{\mathrm{D}}$-aianine; and
iii) Y and Z are H ;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine, and tryptophan.
33. The method of either claim 30 or claim 31 , wherein said compound has a chemical structure in which: Q is an amide bond or an interposed amide bond mimetic of the formula $\mathrm{Q}_{1}-\mathrm{Q}_{2}$, wherein:
a) Q_{1} is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{CHOH}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and CH=; and
b) $\quad \mathrm{Q}_{2}$ is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{O}$, and $\mathrm{CH}=$;
c) with the proviso that when Q_{1} is $\mathrm{CH}=$, then Q_{2} is $\mathrm{CH}=$.
34. The method of claim 32 , wherein said compound has a chemical structure in which: Q is an amide bond or an interposed amide bond mimetic of the formula $Q_{1}-Q_{2}$, wherein:
a) Q_{1} is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{CHOH}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and $\mathrm{CH}=$: and
c) with the proviso that when Q_{1} is $\mathrm{CH}=$, then Q_{2} is $\mathrm{CH}-$
35. The method of 34 , wherein said compound has a chemical structure in which:
a) Y and Z are H ;
b) $\quad R_{2}$ is as defined in claim 30 ;
c) $\quad \mathrm{R}_{3}$ is an aromatic amino acid; and
d) $\quad \mathrm{R}_{4}$ is an aromatic amino acid;
e) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue; and
ii) $\quad R_{2}$ is D-alanine;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
36. The method of either claim 30 or 31 , wherein said compound has a chemical structure in which:
a) $\quad \mathrm{Y}$ and Z are H ;
b) $\quad \mathrm{R}_{2}$ is as defined in claim 30 ;
c) $\quad \mathrm{R}_{3}$ is an aromatic amino acid; and
d) $\quad \mathrm{R}_{4}$ is an aromatic amino acid;
e) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue; and
ii) $\quad R_{2}$ is D-alanine;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
37. A method for the treatment of pain comprising the step of administering to a mammal in need of such treatment a pharmaceutically effective amount of a pharmaceutical composition possessing analgesic activity, wherein said pharmaceutical composition comprises, in admixture with a pharmaceutically acceptable carrier, an effective amount of at least one compound having the chemical structure of formula (A):
wherein:
a) $\quad \mathrm{X}$ is selected from the group consisting of H and C_{1-6} alkyl;
b) $\quad Y$ and Z are independently selected from the group consisting of H , cyclic aralkyl, and $\mathrm{C}_{1.6}$ alkyl;
c) $\quad \mathrm{R}_{1}$ is a tyrosyl residue or a $2^{\prime}, 6^{\prime}$-dimethyltyrosyl residue;
d) $\quad R_{2}$ is an amino acid having the R -configuration, aminoisobutyric acid, cyclopropylalanine, cyclohomoleucine or cycloleucine;
e) $\quad R_{3}$ is an aromatic amino acid;
f) $\quad \mathrm{R}_{4}$ is an aromatic amino acid residue;
g) $\quad \mathrm{Q}$ is an amide bond or an interposed amide bond mimetic;
n) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H; and
iv) $\quad R_{3}$ is phenylalanine;
then R_{4} is not unsubstituted phenylalanine or phenylalanine substituted with $4 \mathrm{NO}_{2}$ or $4 \mathrm{~N}_{3}$,
i) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H; and
iv) $\quad R_{4}$ is phenylalanine;
then R_{3} is not unsubstituted phenylalanine or phenylalanine substituted with $4 . \mathrm{NO}_{2} ;$
j) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine;
iii) X, Y, and Z are H ; and
k) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is D-alanine; and
iii) X, Y and Z are H ,
then both R_{3} and R_{4} are not tryptophan;

1) with the further proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue;
ii) $\quad R_{2}$ is a D-amino acid with a lower alkyl or lower thioalkyl group as a side chain; and
iii) $\quad R_{4}$ is a neutral amino acid,
then R_{3} is not unsubstituted phenylalanine;
m) and wherein said compunid is nūt selected fiomin the group coñisising of:

H-Tyr-D-Phe-Phe-Phe- NH_{2};
H-Tyr-D-NMePhe-Phe-Phe-NH ${ }_{2}$;
H-Tyr-D-Tic-Phe-Phe-NH ${ }_{2}$;
H-Tyr-Pro-Phe-Thr(Bz1)-NH2;
H-Tyr-Pro-Phe-Phe- NH_{2};
H-Tyr-Pro-Phe-Apb-NH ${ }_{2}$;
H-Tyr-Pro-Phe-App- NH_{2};
H-Tyr-Pro-Phe-Aph- NH_{2}; and
H-Tyr-Pro-Apb-Phe- NH_{2}.
wherein Apb is 2-amino-4-phenylbutanoic acid, App is 2-amino-5-phenylpentanoic acid and Aph is 2-amino-6-phenylhexanoic acid.

The method of claim 37, wherein said pharmaceutical composition has peripheral analgesic activity and wherein said compound has a chemical structure in which X is H .

The method of either claim 37 or claim 38 , wherein said pharmaceutical composition has peripheral analgesic activity and wherein said compound has a chemical structure in which:

1) \quad : is a tyrosyl residue:
ii) $\quad \mathrm{R}_{2}$ is D -alanine; and
iii) Y and Z are H ;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine, and tryptophan.
40. The method of either claim 37 or claim 38, wherein said pharmaceutical composition has penipheral analgesic activity and wherein said compound has a chemical structure in which: Q is an amide bond or an interposed amide bond mimetic of the formula $Q_{1}-Q_{2}$, wherein:
a) Q_{1} is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{CHOH}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and $\mathrm{CH}=$; and
b) $\quad \bar{Q}_{2}$ is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{O}$, and $\mathrm{CH}=$;
c) with the proviso that when Q_{1} is $\mathrm{CH}=$, then Q_{2} is $\mathrm{CH}=$.
41. The method of claim 39, wherein said pharmaceutical composition has peripheral analgesic activity and wherein said compound has a chemical structure in which: Q is an amide bond or an interposed amide bond mimetic of the formula $Q_{1}-Q_{2}$, wherein:
a) Q_{1} is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{CHOH}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$, and $\mathrm{CH}=$; and
b) $\quad \mathrm{Q}_{2}$ is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{O}$, and $\mathrm{CH}=$;
c) with the proviso that when Q_{1} is $\mathrm{CH}=$, then Q_{2} is $\mathrm{CH}=$.
42. The method of claim 41, wherein said pharmaceutical composition has peripheral analgesic activity and wherein said compound has a chemical structure in which:
a) $\quad \mathrm{Y}$ and Z are H ;
b) $\quad R_{2}$ is as defined in claim 37;
c) $\quad R_{7}$ is an aromatic amino acid; and
ii) $\quad \mathrm{R}_{2}$ is D -alanine;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
43. The method of either claim 37 or claim 38 , wherein said pharmaceutical composition has peripheral analgesic activity and wherein said compound has a chemical structure in which:
a) $\quad \mathrm{Y}$ and Z are H ;
b) $\quad R_{2}$ is as defined in claim 37;
c) $\quad R_{3}$ is an aromatic amino acid; and
d) $\quad R_{4}$ is an aromatic amino acid;
e) with the proviso that when:
i) $\quad R_{1}$ is a tyrosyl residue; and
ii) $\quad R_{2}$ is D-alanine;
then R_{3} and R_{4} are different and are selected from the group consisting of phenylalanine and tryptophan.
44. The method of claim 37, wherein said pharmaceutical composition further comprises an effective amount of at least one other therapeutically active agent.
45. The method of claim 39, wherein said pharmaceutical composition further comprises an effective amount of at least one other therapeutically active agent.
46. The method of claim 40, wherein said pharmaceutical composition further comprises an effective amount of at least one other therapeutically active agent.
47. The method of claim 42, wherein said pharmaceutical composition further comprises an effective amount of at least one other therapeutically active agent.
48. A method for the treatment of pain comprising the step of administering to a mammal in need of such treatment, a pharmaceutically effective amount of the compound H-Tyr-D-Ala-Phe-Phe- NH_{2} or analogues or pharmaceutically acceptable derivatives thereof.
49. The method of claim 49, wherein said analogue is selected from the group consisting of: H-Tyr-D-Ala-Phe-Phe(4-NO2)-NH2, and H-Tyr-D-Ala-Phe-Phe(4- NO_{3})- NH_{2}.
50. A pharmaceutical composition having analgesic activity, comprising in admixture with a pharmaceutically acceptable carrier, an effective amount of at least one peptide selected from the group consisting of:
$\overline{\mathrm{H}}$ - $\mathrm{T} y \mathrm{r}$-Aib-Phe-Phe- NH_{2};
H-Tyr-D-Nle-Phe-Phe- NH_{2};
H-Tyr-D-Ala-Phe-2'-Nal- NH_{2};
H-Tyr-D-Ala-D-Phe-Phe- NH_{2};
H-Tyr-D-Ala-Phe ($4 \mathrm{NO}_{2}$)-Phe $\left(4 \mathrm{NO}_{2}\right)-\mathrm{NH}_{2}$;
H-Tyr-D-Ala-Phe-Tic- NH_{2};
H-Tyr-D-Ala-Phe-Phe(NMe)- NH_{2};
H-Tyr-D-Ala-Phe-1'Nal- NH_{2};
H-Tyr-D-Ala-Trp-Phe-NH2;
H-Tyr-D-Ala-Phe-Trp-NH ${ }_{2}$;
H-Tyr- ∇ Ala-Phe-Phe- NH_{2};
$\nabla \mathrm{CH}_{2}$-Tyr-D-Ala-Phe-Phe- NH_{2};
H-Tyr-D-Nle-Phe-Trp-NH2;
H-Tyr-D-Nle-Phe-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-Phe-NH ${ }_{2}$;
H-Tyr-D-Ala-Trp-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-Trp-NH2:

H-Tyr-D-\al-Phe-Phe-NH2:

H-Tyr-D-Leu-Phe-Phe-NH2;
H-Tyr-D-Ile-Phe-Phe- NH_{2};
H-Tyr-D-Abu-Phe-Phe- $\mathrm{NH}_{2}{ }^{\prime}$
H-Tyr-Chl-Phe-Phe- NH_{2};

H-Tyr-Cle-Phe-Phe- NH_{2};
H-Tyr-D-Arg-Phe-Phe- NH_{2};
H-Tyr-D-Cys-Phe-Phe- NH_{2};
H-Tyr-D-Thr-Phe-Phe-NH ${ }_{2}$;
H-DMT-D-Ser-Phe-Phe- NH_{2};
H-Tyr-D-Ala-Phe-Phe-OH trifluoroacetate;

H-Tyr-D-Arg-Phe-Hph- NH_{2} bis-trifluoroacetic acid;
H-DMT-D-Ala-Phe-Phe- NH_{2} trifluoroacetic acid;
H-D-DMT-D-Ala-Phe-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Hph- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Cys(Bzl)- NH_{2} trifluoroacetic acid salt;
H -Tyr-D-Arg-Hph-Phe- NH_{2} bis-trifluoroacetic acid salt;
H -Tyr-D-Arg-Phg-Phe- NH_{2} bis-trifluoro acetic acid salt;
H-Tyr-D-Ala-Phe-Phe- $\mathrm{CH}_{2} \mathrm{OH}$ hydrochloride salt;
H -Tyr-D-Ala-Hph-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Met-Phe-Phe-NH ${ }_{2}$ trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-D-Phe- NH_{2} bis-trifluoroacetic acid salt;
H-Tyr-D-Ala-Phg-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-(D)-Ala-(D)-Phg-Phe-NH2 trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-Phe(pF)-NH2 bis-trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-D-Phe(pF)-NH2 ditrifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Phe(pF)-NH2 trifluoroacetic acid salt; and
H-Tyr-D-Ala-Phe-D-Phe(pF)-NHz trifluoroacetic acid salt.

H-Tyt-D-Nia-Phe-Phe-NH2.
53. The pharmaceutical composition of claim 51, wherein said peptide is H-Tyr-D-Ser-Phe-Phe- NH_{2}.
54. The pharmaceutical composition of claim 51, wherein said peptide is H-Tyr-D-Arg-Phe-Phe-NH2.
55. A method for the treatment of pain, comprising the step administering to a mammal in need of such treatment a pharmaceutically effective amount of a peptide selected from the group consisting of:
H-Tyr-Aib-Phe-Phe- NH_{2};
H-Tyr-D-Nie-Fhe-Phe-NH2;
H-Tyr-D-Ala-Phe-2'-Nal-NH2;
H-Tyr-D-Ala-D-Phe-Phe-NH2;
H-Tyr-D-Ala-Phe $\left(4 \mathrm{NO}_{2}\right)$-Phe $\left(4 \mathrm{NO}_{2}\right)-\mathrm{NH}_{2}$;
H-Tyr-D-Ala-Phe-Tic- NH_{2};
H-Tyr-D-Ala-Phe-Phe(NMe)- NH_{2};
H-Tyr-D-Ala-Phe-1 ${ }^{\prime}$ Nal- NH_{2};
H-Tyr-D-Ala-Trp-Phe-NH2;
H-Tyr-D-Ala-Phe-Trp-NH ;
H-Tyr- ∇ Ala-Phe-Phe- NH_{2};
$\nabla \mathrm{CH}_{2}$-Tyr-D-Ala-Phe-Phe- NH_{2};
H-Tyr-D-Nle-Phe-Trp-NH2;
H-Tyr-D-Nle-Phe-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-Phe-NH ${ }_{2}$;
H-Tyr-D-Ala-Trp-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-2'-Nal-NH2;
H-Tyr-D-Nle-Trp-Trp-NH2;
H-Tyr-D-Nva-Phe-Phe- NH_{2};

H-Tyr-D-Leu-Phe-Phe-NH2:

H-Tyr-D-Ile-Phe-Phe- NH_{2};
H-Tyr-D-Abu-Phe-Phe- $\mathrm{NH}_{2}{ }^{\prime}$
H-Tyr-Chl-Phe-Phe- NH_{2};
H-Tyr-Cle-Phe-Phe- NH_{2};

H-Tyr-D-Arg-Phe-Phe-NH ${ }_{2}$;
H-Tyr-D-Cys-Phe-Phe- NH_{2};
H-Tyr-D-Thr-Phe-Phe- NH_{2};
H-DMT-D-Ser-Phe-Phe- NH_{2};
H-Tyr-D-Ala-Phe-Phe-OH trifluoroacetate;
H-Tyr-D-Ala-Phe-Phg-NH2 trifluoroacetic acid salt;
H -Tyr-D-Arg-Phe-Hph- NH_{2} bis-inifluoroacetic acid;
H-DMT-D-Ala-Phe-Phe- NH_{2} trifluoroacetic acid;
H-D-DMT-D-Ala-Phe-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Hph- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Cys(Bzl)-NH2 trifluoroacetic acid salt;
H-Tyr-D-Arg-Hph-Phe- NH_{2} bis-trifluoroacetic acid salt; H -Tyr-D-Arg-Phg-Phe- NH_{2} bis-trifluoro acetic acid salt;
H-Tyr-D-Ala-Phe-Phe- $\mathrm{CH}_{2} \mathrm{OH}$ hydrochloride salt;
H-Tyr-D-Ala-Hph-Phe-NH2 trifluoroacetic acid salt;
H-Tyr-D-Met-Phe-Phe-NH2 trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-D-Phe-NH2 bis-trifluoroacetic acid salt;
H-Tyr-D-Ala-Phg-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-(D)-Ala-(D)-Phg-Phe- NH_{2} trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-Phe(pF)-NH2 bis-trifluoroacetic acid salt;
H-Tyr-D-Arg-Phe-D-Phe(pF) $-\mathrm{NH}_{2}$ ditrifluoroacetic acid salt;
H-Tyr-D-Ala-Phe-Phe(pF)- NH_{2} trifluoroacetic acid salt; and
H-Tyr-D-Ala-Phe-D-Phe(pF)-NH2 trifluoroacetic acid salt.

58．The method of claim 55，wherein said peptide is H－Tyr－D－Arg－Phe－Phe－ NH_{2} ．

59．A compound of formula（B）：

（B）
and salts thereof wherein，
a）$\quad \mathrm{R}_{5}$ is Tyr or $2^{\prime}, 6^{\prime}$－dimethyltyrosine，or an analog or derivative thereof；
b）$\quad R_{6}$ is D－Ala or D－Arg；
c）$\quad \mathrm{K}_{7}$ is Phe（ pF ）；
d）$\quad \mathrm{R}_{8}$ is Phe or Phe (pF) ；
e）$\quad \mathrm{X}$ is H or C_{1-6} alkyl；and
f）$\quad \mathrm{Y}$ and Z are independently H ，aralkyl or C_{1-6} alkyl．

60．The compound according to claim 59 ，wherein R_{6} is D－Ala．

61．The compound according to claim 59 ，wherein R_{6} is D－Arg．

62．The compound according to claing $59, \mathrm{R}_{8}$ is Phe．

63．The compound according to claim 62，wherein R_{6} is D－Ala．

64．The compound according to claim 62，wherein R_{6} is D－Arg．

65．The compound according to any one of claims $59-64$ wherein X is H ，and Y and Z are both H ．

H-Tyr-D-Ala-Phe(pF)-Phe(pF)-NH2; and H-Tyr-D-Ala-Phe(pF)-Phe- NH_{2}.
67. The compound H-Tyr-D-Ala-Phe(pF)-Phe- NH_{2}.
68. The compound according to claim 59, wherein said compound is selected from the group consisting of:
H-Tyr-D-Arg-Phe(pF)-Phe(pF)-NH2 and
H-Tyr-D-Arg-Phe(pF)-Phe- NH_{2}.
69. The compound H-Tyr-D-Arg-Phe(pF)-Phe- NH_{2},
70. A pharmaceutical composition comprising a compound according to any one of claims 5964, or 66-69 in admixture with a pharmaceutically acceptable carrier.
71. A pharmaceutical composition comprising a compound according to claim 65, in admixture with a pharmaceutically acceptable carrier.
72. A method for the treatment of pain comprising, administering to a mammal in need of such treatment a pharmaceutically effective amount of a compound according to any one of claims 59-64 or 66-69.
73. The method of claim 72. wherein said peptides are administered to a human at a dosage of between $0.05 \mathrm{mg} / \mathrm{kg}$ and $20 \mathrm{mg} / \mathrm{kg}$.
74. The method of claim'73, wherein said peptides are administered at a dosage of between 0.1 $\mathrm{mg} / \mathrm{kg}$ and $1.0 \mathrm{mg} / \mathrm{kg}$.
\qquad
76. The method of claim 75, wherein said peptides are administered to a human at a dosage of between $0.05 \mathrm{mg} / \mathrm{kg}$ and $20 \mathrm{mg} / \mathrm{kg}$.
77. The method of claim 75, wherein said peptides are administered at a dosage of between 0.1 $\mathrm{mg} / \mathrm{kg}$ and $1.0 \mathrm{mg} / \mathrm{kg}$.

